metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaqua[*N*,*N*'-bis(4-methoxybenzyl)-2,2'-(ethane-1,2-diyldiimino)diacetato]nickel(II) sesquihydrate

Min Zhang, Xuegang Song, Ping Su and Xianggao Meng*

Chemistry Department, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: zhangmin126_2005@126.com

Received 10 November 2007; accepted 19 November 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; disorder in solvent or counterion; R factor = 0.043; wR factor = 0.133; data-to-parameter ratio = 16.1.

In the title compound, $[Ni(C_{22}H_{26}N_2O_6)(H_2O)_2]\cdot 1.5H_2O$, the Ni^{II} ion is in a slightly distorted octahedral coordination environment formed by an N₂O₄ donor set. In the crystal structure, intermolecular O-H···O and C-H···O hydrogen bonds and C-H··· π interactions connect molecules into a three-dimensional network.

Related literature

For related literature, see: Zhang, Lan *et al.* (2007); Zhang, Weng, Hu *et al.* (2007); Zhang, Weng & Xu (2007); Xu *et al.* (2004).

Experimental

Crystal data

[Ni($C_{22}H_{26}N_2O_6$)(H_2O)₂]·1.5H₂O $M_r = 536.20$ Monoclinic, C2/c a = 25.1393 (14) Å b = 8.1256 (4) Å c = 26.6925 (15) Å $\beta = 114.248$ (2)° $V = 4971.5 (5) \text{ Å}^{3}$ Z = 8Mo K\alpha radiation $\mu = 0.84 \text{ mm}^{-1}$ T = 294 (2) K $0.30 \times 0.23 \times 0.20 \text{ mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer5429 independent reflectionsdetector diffractometer4279 reflections with $I > 2\sigma(I)$ Absorption correction: none $R_{int} = 0.056$

Refinement

ł

S

5

$R[F^2 > 2\sigma(F^2)] = 0.043$ $R(F^2) = 0.133$	H atoms treated by a mixture of independent and constrained
S = 1.03	refinement
429 reflections	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
37 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$
restraints	

Table 1

Selected bond lengths (Å).

Ni-O7	2.0352 (15)	Ni-O8	2.0818 (15)
Ni-O1	2.0529 (14)	Ni-N2	2.1159 (18)
Ni-O4	2.0666 (14)	Ni-N1	2.1212 (17)

Table 2

Hydrogen-bond geometry (Å, $^{\circ}$).

Cg1 is the centroid of the C16-C21 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O7-H7A\cdots O4^{i}$	0.791 (15)	1.984 (16)	2.769 (2)	172 (3)
$O7 - H7B \cdots O1^{ii}$	0.757 (15)	1.900 (16)	2.656 (2)	176 (2)
$O8-H8B\cdots O2^{ii}$	0.776 (17)	2.027 (16)	2.787 (2)	166 (3)
$O10-H10A\cdots O3^{iii}$	0.784 (17)	2.076 (17)	2.857 (2)	174 (3)
$O10-H10B\cdots O5^{iv}$	0.796 (17)	2.12 (2)	2.851 (3)	152 (3)
$C5-H5B\cdots O9^{v}$	0.97	2.49	3.430 (5)	162
C15−H15B···O9	0.97	2.52	3.451 (5)	161
O8−H8A…O10	0.832 (16)	1.913 (17)	2.731 (3)	167 (3)
$C12-H12C\cdots Cg1^{vi}$	0.96	2.80	3.746 (3)	169

Symmetry codes: (i) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + 1, z - \frac{1}{2}$; (iv) x, y + 1, z; (v) x, y - 1, z; (vi) $-x, y - 1, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2570).

References

Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS, Inc., Madison, Wisconsin, USA.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Xu, X.-M., Mao, Z.-W. & Ji, L.-N. (2004). Transition Met. Chem. 29, 658–662.
 Zhang, M., Lan, S.-M., Weng, H.-L. & Xu, X.-M. (2007). Acta Cryst. E63, m2045.
- Zhang, M., Weng, H.-L., Hu, B. & Xu, X.-M. (2007). Acta Cryst. E63, m1797. Zhang, M., Weng, H.-L. & Xu, X.-M. (2007). Acta Cryst. E63, m1465–m1466.

Acta Cryst. (2007). E63, m3164 [doi:10.1107/S1600536807060849]

Diaqua[N,N'-bis(4-methoxybenzyl)-2,2'-(ethane-1,2-diyldiimino)diacetato]nickel(II) sesquihydrate

M. Zhang, X. Song, P. Su and X. Meng

Comment

We have previously synthesized and characterized Ni, Zn and Cd complexes using the ligand [N, *N*'-bis(4-methoxylbenzyl) ethane -1,2-diyldiimino] diacetate (H₂L) (Zhang, Lan *et al.*, 2007; Zhang, Weng, Hu *et al.*, 2007; Zhang, Weng & Xu 2007; Xu *et al.*, 2004). As part of our continuing studies of these types of complexes, we report the crystal structure of the title complex (I).

In (I), the Ni^{II} ion is in a slightly distorted octahedral coordination environment formed by an N₂O₄ donor set (Fig.1). There are no significant differences between the bond lengths and angles around the central nickel atom in and that of earlier reported analogs. In the crystal structure (Fig 2) O—H···O, C—H···O hydrogen bonds and C—H··· π interaction, link molecules into a three-dimensional network.

Experimental

The ligand [N,N-bis(4-methoxylbenzyl)ethane-1,2-diyldiimino] diacetate(H₂L) and its nickel complex were prepared according to the literature method (Xu *et al.*, 2004). Crystals were obtained by slow evaporation (three weeks) of a methanol solution (15 ml) of the title complex (0.046 g, 0.1 mmol).

Refinement

H atoms bonded to C atoms were positioned geometrically with C—H = 0.93 Å(aromatic), 0.97Å (methylene) and 0.96Å (methyl) and with $U_{iso}(H) = kU_{eq}(C)$ (k = 1.5 for methyl and 1.2 for the other C atoms. H atoms bonded to water O7, O8 and O10 atoms were found in the difference maps and refined with $U_{iso}(H)$ = 1.5 $U_{eq}(O)$. Water atom O9, refined with a partial occupancy of 0.516 (1) but this was eventually fixed at 0.5. H atoms attached to O9 were included in their as found positions with $U_{iso}(H)$ = 1.5 $U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of showing 30% probability displacement ellipsoids.

Fig. 2. Part of the crystal structure showing the formation of a three-dimensional network. Dashed lines denote hydrogen bonds.

Diaqua[N,N'-bis(4-methoxybenzyl)-2,2'-(ethane-1,2- diyldiimino)diacetato]nickel(II) sesquihydrate

Crystal data	
[Ni(C ₂₂ H ₂₆ N ₂ O ₆)(H ₂ O) ₂]·1.5H ₂ O	$F_{000} = 2264$
$M_r = 536.20$	$D_{\rm x} = 1.446 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 5321 reflections
<i>a</i> = 25.1393 (14) Å	$\theta = 1.6 - 26.9^{\circ}$
b = 8.1256 (4) Å	$\mu = 0.84 \text{ mm}^{-1}$
c = 26.6925 (15) Å	T = 294 (2) K
$\beta = 114.248 \ (2)^{\circ}$	Block, blue
$V = 4971.5 (5) \text{ Å}^3$	$0.30 \times 0.23 \times 0.20 \text{ mm}$
Z = 8	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	4279 reflections with $I > 2\sigma(I)$
Radiation source: fine focus sealed Siemens Mo tube	$R_{\rm int} = 0.056$
Monochromator: graphite	$\theta_{\text{max}} = 27.0^{\circ}$
T = 294(2) K	$\theta_{\min} = 1.7^{\circ}$
0.3° wide ω exposures scans	$h = -32 \rightarrow 31$
Absorption correction: none	$k = -10 \rightarrow 10$
26930 measured reflections	$l = -33 \rightarrow 34$
5429 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.133$	$w = 1/[\sigma^2(F_o^2) + (0.0925P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.001$
5429 reflections	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$

337 parameters

 $\Delta\rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$ Extinction correction: none

9 restraints Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Ni	0.177788 (10)	0.49923 (3)	0.223662 (10)	0.03190 (12)	
C1	0.08623 (9)	0.5097 (2)	0.26158 (10)	0.0371 (5)	
H1A	0.0816	0.6283	0.2595	0.044*	
H1B	0.0669	0.4671	0.2838	0.044*	
C2	0.05859 (9)	0.4373 (3)	0.20478 (9)	0.0388 (5)	
H2A	0.0611	0.3182	0.2072	0.047*	
H2B	0.0176	0.4673	0.1879	0.047*	
C3	0.18198 (9)	0.5916 (3)	0.32888 (8)	0.0384 (5)	
H3A	0.2204	0.5493	0.3520	0.046*	
H3B	0.1616	0.6145	0.3521	0.046*	
C4	0.18819 (9)	0.7496 (3)	0.30125 (9)	0.0395 (5)	
C5	0.16049 (9)	0.2968 (3)	0.31155 (9)	0.0384 (5)	
H5A	0.2017	0.2727	0.3239	0.046*	
H5B	0.1393	0.2194	0.2825	0.046*	
C6	0.14326 (9)	0.2674 (3)	0.35899 (9)	0.0375 (5)	
C7	0.08884 (9)	0.2062 (3)	0.35051 (9)	0.0406 (5)	
H7	0.0621	0.1847	0.3148	0.049*	
C8	0.07307 (10)	0.1761 (3)	0.39378 (9)	0.0406 (5)	
H8	0.0363	0.1348	0.3871	0.049*	
C9	0.11248 (10)	0.2080 (3)	0.44652 (9)	0.0472 (6)	
C10	0.16688 (11)	0.2712 (4)	0.45653 (11)	0.0611 (8)	
H10	0.1931	0.2955	0.4922	0.073*	
C11	0.18194 (10)	0.2981 (4)	0.41266 (10)	0.0549 (7)	
H11	0.2190	0.3378	0.4195	0.066*	
C12	0.05006 (11)	0.0964 (4)	0.48656 (11)	0.0599 (7)	
H12A	0.0169	0.1655	0.4674	0.090*	
H12B	0.0516	0.0699	0.5222	0.090*	
H12C	0.0466	-0.0030	0.4661	0.090*	
C13	0.08348 (9)	0.3750 (3)	0.12824 (9)	0.0415 (5)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\dot{A}^2)

H13A	0.0920	0.4271	0.0997	0.050*	
H13B	0.0438	0.3336	0.1116	0.050*	
C14	0.12553 (9)	0.2309 (3)	0.15258 (10)	0.0423 (5)	
C15	0.06626 (9)	0.6627 (3)	0.14556 (9)	0.0392 (5)	
H15A	0.0872	0.6943	0.1236	0.047*	
H15B	0.0761	0.7420	0.1752	0.047*	
C16	0.00181 (9)	0.6764 (3)	0.11018 (9)	0.0394 (5)	
C17	-0.02254 (10)	0.6239 (4)	0.05617 (9)	0.0529 (6)	
H17	0.0016	0.5790	0.0411	0.063*	
C18	-0.08187 (11)	0.6362 (4)	0.02370 (10)	0.0601 (7)	
H18	-0.0972	0.5967	-0.0122	0.072*	
C19	-0.11784 (10)	0.7070 (3)	0.04483 (11)	0.0532 (6)	
C20	-0.09445 (10)	0.7631 (3)	0.09848 (10)	0.0481 (6)	
H20	-0.1185	0.8121	0.1129	0.058*	
C21	-0.03585 (10)	0.7467 (3)	0.13052 (9)	0.0426 (5)	
H21	-0.0209	0.7835	0.1667	0.051*	
C22	-0.20177 (13)	0.6894 (6)	-0.04023 (13)	0.1024 (14)	
H22A	-0.1866	0.7626	-0.0594	0.154*	
H22B	-0.2434	0.7019	-0.0543	0.154*	
H22C	-0.1925	0.5779	-0.0455	0.154*	
N1	0.14956 (7)	0.4672 (2)	0.28780 (7)	0.0312 (4)	
N2	0.08809 (8)	0.49765 (18)	0.17022 (8)	0.0331 (4)	
01	0.18227 (6)	0.73640 (17)	0.25161 (6)	0.0361 (3)	
O2	0.19946 (9)	0.8785 (2)	0.32799 (8)	0.0633 (5)	
03	0.10204 (8)	0.1810 (3)	0.49259 (7)	0.0660 (6)	
O4	0.16957 (6)	0.25788 (17)	0.19711 (6)	0.0363 (3)	
O5	0.11420 (8)	0.0997 (2)	0.12718 (8)	0.0753 (6)	
O6	-0.17656 (7)	0.7273 (3)	0.01645 (9)	0.0784 (7)	
07	0.26310 (6)	0.47501 (19)	0.27647 (6)	0.0326 (3)	
H7A	0.2796 (10)	0.560 (2)	0.2818 (11)	0.049*	
H7B	0.2772 (10)	0.405 (2)	0.2679 (10)	0.049*	
08	0.20131 (7)	0.5574 (2)	0.15954 (7)	0.0425 (4)	
H8B	0.2297 (10)	0.519 (3)	0.1597 (13)	0.064*	
H8A	0.1971 (12)	0.653 (2)	0.1477 (11)	0.064*	
O10	0.18169 (8)	0.8511 (2)	0.10513 (7)	0.0541 (4)	
H10A	0.1592 (12)	0.836 (4)	0.0748 (8)	0.081*	
H10B	0.1741 (14)	0.932 (3)	0.1176 (12)	0.081*	
09	0.0732 (2)	0.9932 (4)	0.2293 (2)	0.0868 (16)	0.50
H9A	0.1124	0.9932	0.2293	0.130*	0.50
H9B	0.0502	0.9984	0.1962	0.130*	0.50

Atomic displacement parameters (A^2)	Atomic di	isplacement	parameters	$(Å^2)$
--	-----------	-------------	------------	---------

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni	0.02839 (18)	0.03414 (19)	0.03438 (18)	0.00004 (9)	0.01411 (13)	0.00305 (9)
C1	0.0288 (11)	0.0420 (13)	0.0468 (12)	0.0068 (8)	0.0222 (10)	0.0130 (9)
C2	0.0260 (10)	0.0412 (12)	0.0497 (12)	-0.0009 (9)	0.0161 (9)	0.0099 (10)
C3	0.0419 (12)	0.0422 (13)	0.0375 (10)	0.0029 (9)	0.0226 (9)	0.0001 (9)

C4	0.0372 (11)	0.0392 (12)	0.0495 (12)	0.0011 (9)	0.0253 (10)	-0.0020 (10)
C5	0.0367 (11)	0.0394 (12)	0.0442 (11)	0.0068 (9)	0.0216 (9)	0.0133 (9)
C6	0.0357 (10)	0.0391 (12)	0.0402 (11)	0.0039 (9)	0.0180 (9)	0.0125 (9)
C7	0.0388 (11)	0.0430 (13)	0.0394 (11)	-0.0021 (9)	0.0155 (9)	0.0066 (9)
C8	0.0370 (11)	0.0430 (13)	0.0447 (12)	-0.0031 (9)	0.0198 (10)	0.0070 (10)
C9	0.0458 (13)	0.0592 (16)	0.0408 (12)	-0.0032 (11)	0.0221 (10)	0.0111 (11)
C10	0.0466 (14)	0.091 (2)	0.0383 (12)	-0.0185 (14)	0.0104 (10)	0.0138 (13)
C11	0.0364 (12)	0.0805 (19)	0.0439 (12)	-0.0084 (12)	0.0126 (10)	0.0180 (12)
C12	0.0507 (15)	0.086 (2)	0.0526 (14)	-0.0012 (14)	0.0313 (12)	0.0142 (14)
C13	0.0344 (11)	0.0452 (13)	0.0367 (10)	0.0014 (9)	0.0063 (9)	0.0016 (9)
C14	0.0348 (11)	0.0406 (13)	0.0464 (12)	-0.0011 (9)	0.0116 (9)	-0.0044 (10)
C15	0.0335 (11)	0.0382 (12)	0.0449 (11)	0.0045 (9)	0.0151 (9)	0.0132 (9)
C16	0.0348 (11)	0.0415 (12)	0.0416 (11)	0.0070 (9)	0.0154 (9)	0.0128 (9)
C17	0.0433 (13)	0.0733 (18)	0.0426 (12)	0.0167 (12)	0.0181 (10)	0.0102 (12)
C18	0.0486 (14)	0.085 (2)	0.0395 (12)	0.0121 (14)	0.0111 (11)	0.0049 (13)
C19	0.0351 (12)	0.0685 (18)	0.0529 (14)	0.0058 (11)	0.0147 (11)	0.0116 (12)
C20	0.0387 (12)	0.0538 (15)	0.0579 (14)	0.0095 (10)	0.0259 (11)	0.0125 (12)
C21	0.0418 (12)	0.0451 (13)	0.0419 (11)	0.0041 (10)	0.0183 (10)	0.0077 (10)
C22	0.0467 (17)	0.175 (4)	0.0621 (19)	0.011 (2)	-0.0008 (15)	0.016 (2)
N1	0.0263 (8)	0.0344 (9)	0.0362 (9)	0.0035 (7)	0.0162 (7)	0.0067 (7)
N2	0.0276 (9)	0.0344 (10)	0.0373 (9)	0.0029 (6)	0.0132 (8)	0.0078 (7)
O1	0.0374 (8)	0.0330 (8)	0.0426 (8)	-0.0016 (6)	0.0210 (6)	0.0019 (6)
O2	0.0919 (14)	0.0448 (10)	0.0778 (12)	-0.0143 (9)	0.0598 (11)	-0.0192 (9)
O3	0.0639 (11)	0.0989 (15)	0.0404 (9)	-0.0248 (11)	0.0267 (8)	0.0083 (9)
O4	0.0310 (7)	0.0343 (8)	0.0388 (8)	0.0017 (6)	0.0097 (6)	0.0007 (6)
O5	0.0577 (11)	0.0523 (12)	0.0821 (13)	0.0061 (9)	-0.0056 (10)	-0.0270 (10)
O6	0.0323 (9)	0.126 (2)	0.0665 (12)	0.0121 (10)	0.0096 (9)	0.0082 (12)
O7	0.0276 (8)	0.0343 (8)	0.0361 (8)	0.0007 (6)	0.0134 (6)	-0.0032 (6)
O8	0.0422 (9)	0.0480 (9)	0.0447 (9)	0.0053 (8)	0.0254 (7)	0.0098 (8)
O10	0.0628 (11)	0.0548 (11)	0.0409 (9)	0.0101 (9)	0.0176 (8)	0.0019 (8)
O9	0.066 (3)	0.066 (3)	0.115 (4)	0.0022 (19)	0.023 (3)	-0.020 (2)

Geometric parameters (Å, °)

Ni—O7	2.0352 (15)	C12—H12B	0.9600
Ni—O1	2.0529 (14)	C12—H12C	0.9600
Ni—O4	2.0666 (14)	C13—N2	1.468 (3)
Ni—O8	2.0818 (15)	C13—C14	1.532 (3)
Ni—N2	2.1159 (18)	С13—Н13А	0.9700
Ni—N1	2.1212 (17)	С13—Н13В	0.9700
C1—N1	1.493 (3)	C14—O5	1.232 (3)
C1—C2	1.504 (3)	C14—O4	1.267 (3)
C1—H1A	0.9700	C15—N2	1.496 (3)
C1—H1B	0.9700	C15—C16	1.508 (3)
C2—N2	1.484 (3)	C15—H15A	0.9700
C2—H2A	0.9700	C15—H15B	0.9700
C2—H2B	0.9700	C16—C17	1.382 (3)
C3—N1	1.468 (3)	C16—C21	1.393 (3)
C3—C4	1.521 (3)	C17—C18	1.387 (3)

С3—НЗА	0.9700	С17—Н17	0.9300
С3—Н3В	0.9700	C18—C19	1.373 (4)
C4—O2	1.233 (3)	C18—H18	0.9300
C4—O1	1.276 (3)	C19—O6	1.364 (3)
C5—N1	1.500 (3)	C19—C20	1.383 (4)
C5—C6	1.516 (3)	C20—C21	1.373 (3)
C5—H5A	0.9700	С20—Н20	0.9300
С5—Н5В	0.9700	C21—H21	0.9300
C6—C11	1.384 (3)	C22—O6	1.413 (4)
C6—C7	1.384 (3)	C22—H22A	0.9600
С7—С8	1.388 (3)	C22—H22B	0.9600
С7—Н7	0.9300	C22—H22C	0.9600
C8—C9	1.373 (3)	O7—H7A	0.791 (15)
С8—Н8	0.9300	O7—H7B	0.757 (15)
С9—ОЗ	1.376 (3)	O8—H8B	0.776 (17)
C9—C10	1.380 (3)	O8—H8A	0.832 (16)
C10-C11	1.388 (4)	O10—H10A	0.784 (17)
C10—H10	0.9300	O10—H10B	0.796 (17)
C11—H11	0.9300	О9—Н9А	0.9830
C12—O3	1.426 (3)	О9—Н9В	0.8345
C12—H12A	0.9600		
O7—Ni—O1	87.37 (6)	H12B—C12—H12C	109.5
07—Ni—O4	94.26 (6)	N2-C13-C14	111.77 (17)
O1—Ni—O4	176.70 (5)	N2—C13—H13A	109.3
O7—Ni—O8	90.98 (6)	C14—C13—H13A	109.3
O1—Ni—O8	95.39 (6)	N2—C13—H13B	109.3
O4—Ni—O8	87.46 (7)	C14—C13—H13B	109.3
O7—Ni—N2	173.93 (6)	H13A—C13—H13B	107.9
O1—Ni—N2	97.76 (6)	O5—C14—O4	125.5 (2)
O4—Ni—N2	80.46 (6)	O5—C14—C13	117.7 (2)
08—Ni—N2	91.78 (7)	O4—C14—C13	116.77 (19)
07—Ni—N1	92.06 (6)	N2-C15-C16	116.57 (18)
O1—Ni—N1	78.96 (6)	N2-C15-H15A	108.1
O4—Ni—N1	98.10 (6)	С16—С15—Н15А	108.1
08—Ni—N1	173.46 (6)	N2-C15-H15B	108.1
N2—Ni—N1	85.77 (7)	C16—C15—H15B	108.1
N1—C1—C2	110.15 (17)	H15A—C15—H15B	107.3
N1—C1—H1A	109.6	C17—C16—C21	116.9 (2)
C2—C1—H1A	109.6	C17—C16—C15	122.2 (2)
N1—C1—H1B	109.6	C21—C16—C15	120.9 (2)
C2—C1—H1B	109.6	C16—C17—C18	122.1 (2)
H1A—C1—H1B	108.1	С16—С17—Н17	118.9
N2—C2—C1	110.81 (17)	C18—C17—H17	118.9
N2—C2—H2A	109.5	C19—C18—C17	119.6 (2)
C1—C2—H2A	109.5	C19—C18—H18	120.2
N2—C2—H2B	109.5	C17—C18—H18	120.2
C1—C2—H2B	109.5	O6—C19—C18	124.6 (2)
H2A—C2—H2B	108.1	O6—C19—C20	116.0 (2)
N1—C3—C4	110.80 (17)	C18—C19—C20	119.5 (2)

N1—C3—H3A	109.5	C21—C20—C19	120.3 (2)
С4—С3—НЗА	109.5	C21—C20—H20	119.9
N1—C3—H3B	109.5	С19—С20—Н20	119.9
С4—С3—Н3В	109.5	C20-C21-C16	121.6 (2)
НЗА—СЗ—НЗВ	108.1	C20-C21-H21	119.2
O2—C4—O1	125.0 (2)	C16—C21—H21	119.2
O2—C4—C3	118.8 (2)	O6—C22—H22A	109.5
O1—C4—C3	116.18 (19)	O6—C22—H22B	109.5
N1—C5—C6	115.65 (17)	H22A—C22—H22B	109.5
N1—C5—H5A	108.4	O6—C22—H22C	109.5
С6—С5—Н5А	108.4	H22A—C22—H22C	109.5
N1—C5—H5B	108.4	H22B—C22—H22C	109.5
C6—C5—H5B	108.4	C3—N1—C1	110.43 (16)
H5A—C5—H5B	107.4	C3—N1—C5	111.74 (16)
C11—C6—C7	117.5 (2)	C1—N1—C5	112.73 (16)
C11—C6—C5	121.1 (2)	C3—N1—Ni	104.56 (12)
C7—C6—C5	121.5 (2)	C1—N1—Ni	103.84 (12)
C6—C7—C8	121.9 (2)	C5—N1—Ni	112.98 (12)
С6—С7—Н7	119.1	C13—N2—C2	110.31 (16)
С8—С7—Н7	119.1	C13—N2—C15	111.92 (17)
C9—C8—C7	119.2 (2)	C2—N2—C15	112.52 (17)
С9—С8—Н8	120.4	C13—N2—Ni	104.29 (12)
С7—С8—Н8	120.4	C2—N2—Ni	104.43 (12)
C8—C9—O3	124.3 (2)	C15—N2—Ni	112.83 (12)
C8—C9—C10	120.6 (2)	C4—O1—Ni	114.97 (13)
O3—C9—C10	115.1 (2)	C9—O3—C12	118.57 (19)
C9—C10—C11	119.1 (2)	C14—O4—Ni	114.31 (14)
C9—C10—H10	120.4	C19—O6—C22	118.4 (2)
C11—C10—H10	120.4	Ni—O7—H7A	111.5 (19)
C6—C11—C10	121.7 (2)	Ni—O7—H7B	110.9 (19)
C6—C11—H11	119.1	H7A—O7—H7B	116 (2)
C10-C11-H11	119.1	Ni—O8—H8B	118 (2)
O3—C12—H12A	109.5	Ni—O8—H8A	119.4 (19)
O3—C12—H12B	109.5	H8B—O8—H8A	110 (2)
H12A—C12—H12B	109.5	H10A—O10—H10B	112 (3)
O3—C12—H12C	109.5	Н9А—О9—Н9В	105.1
H12A—C12—H12C	109.5		
N1—C1—C2—N2	-58.1 (2)	01—Ni—N1—C1	83.25 (12)
N1—C3—C4—O2	160.3 (2)	O4—Ni—N1—C1	-95.24 (12)
N1—C3—C4—O1	-21.0 (3)	N2—Ni—N1—C1	-15.52 (12)
N1-C5-C6-C11	-88.3 (3)	07—Ni—N1—C5	-67.38 (14)
N1—C5—C6—C7	92.9 (3)	01—Ni—N1—C5	-154.29 (14)
С11—С6—С7—С8	0.0 (3)	O4—Ni—N1—C5	27.22 (14)
C5—C6—C7—C8	178.8 (2)	N2—Ni—N1—C5	106.94 (14)
C6—C7—C8—C9	0.1 (4)	C14—C13—N2—C2	-76.0 (2)
С7—С8—С9—О3	-179.1 (2)	C14—C13—N2—C15	157.91 (18)
C7—C8—C9—C10	0.8 (4)	C14—C13—N2—Ni	35.6 (2)
C8—C9—C10—C11	-1.7 (5)	C1—C2—N2—C13	151.50 (17)
O3—C9—C10—C11	178.2 (3)	C1—C2—N2—C15	-82.7 (2)

C7—C6—C11—C10	-0.9 (4)	C1—C2—N2—Ni	39.97 (19)
C5-C6-C11-C10	-179.7 (3)	C16—C15—N2—C13	67.1 (2)
C9—C10—C11—C6	1.8 (5)	C16-C15-N2-C2	-57.8 (2)
N2-C13-C14-O5	158.0 (2)	C16—C15—N2—Ni	-175.64 (15)
N2-C13-C14-O4	-22.7 (3)	01—Ni—N2—C13	153.15 (13)
N2-C15-C16-C17	-80.1 (3)	O4—Ni—N2—C13	-29.66 (13)
N2-C15-C16-C21	101.4 (3)	08—Ni—N2—C13	57.46 (13)
C21—C16—C17—C18	-1.6 (4)	N1—Ni—N2—C13	-128.61 (13)
C15—C16—C17—C18	179.8 (2)	01—Ni—N2—C2	-91.04 (13)
C16-C17-C18-C19	2.0 (4)	O4—Ni—N2—C2	86.15 (13)
C17—C18—C19—O6	179.1 (3)	08—Ni—N2—C2	173.27 (13)
C17—C18—C19—C20	-0.9 (4)	N1—Ni—N2—C2	-12.80 (13)
O6—C19—C20—C21	179.4 (2)	O4—Ni—N2—C15	-151.34 (15)
C18—C19—C20—C21	-0.6 (4)	08—Ni—N2—C15	-64.22 (15)
C19—C20—C21—C16	1.0 (4)	N1—Ni—N2—C15	109.71 (15)
C17—C16—C21—C20	0.1 (3)	O2—C4—O1—Ni	169.82 (19)
C15—C16—C21—C20	178.7 (2)	C3—C4—O1—Ni	-8.7 (2)
C4—C3—N1—C1	-73.8 (2)	08—Ni—O1—C4	-159.23 (15)
C4—C3—N1—C5	159.87 (16)	N2—Ni—O1—C4	108.24 (15)
C4—C3—N1—Ni	37.33 (18)	N1—Ni—O1—C4	24.12 (14)
C2-C1-N1-C3	153.48 (17)	C8—C9—O3—C12	7.9 (4)
C2-C1-N1-C5	-80.7 (2)	C10—C9—O3—C12	-172.0 (3)
C2-C1-N1-Ni	41.88 (18)	O5-C14-O4-Ni	174.6 (2)
C6—C5—N1—C3	60.3 (2)	C13-C14-O4-Ni	-4.6 (3)
C6—C5—N1—C1	-64.7 (2)	O7—Ni—O4—C14	-162.88 (15)
C6—C5—N1—Ni	177.91 (14)	08—Ni—O4—C14	-72.09 (15)
O7—Ni—N1—C3	54.35 (12)	N2-Ni-O4-C14	20.14 (15)
O1—Ni—N1—C3	-32.57 (12)	N1-Ni-O4-C14	104.43 (15)
O4—Ni—N1—C3	148.95 (12)	C18—C19—O6—C22	-7.0 (5)
N2—Ni—N1—C3	-131.33 (13)	C20—C19—O6—C22	173.0 (3)
O7—Ni—N1—C1	170.16 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A	
O7—H7A···O4 ⁱ	0.791 (15)	1.984 (16)	2.769 (2)	172 (3)	
O7—H7B…O1 ⁱⁱ	0.757 (15)	1.900 (16)	2.656 (2)	176 (2)	
O8—H8B···O2 ⁱⁱ	0.776 (17)	2.027 (16)	2.787 (2)	166 (3)	
O10—H10A···O3 ⁱⁱⁱ	0.784 (17)	2.076 (17)	2.857 (2)	174 (3)	
O10—H10B····O5 ^{iv}	0.796 (17)	2.12 (2)	2.851 (3)	152 (3)	
C5—H5B…O9 ^v	0.97	2.49	3.430 (5)	162	
С15—Н15В…О9	0.97	2.52	3.451 (5)	161	
O8—H8A…O10	0.832 (16)	1.913 (17)	2.731 (3)	167 (3)	
C12—H12C···Cg1 ^{vi}	0.96	2.80	3.746 (3)	169	
Symmetry codes: (i) $-x+1/2$, $y+1/2$, $-z+1/2$; (ii) $-x+1/2$, $y-1/2$, $-z+1/2$; (iii) x , $-y+1$, $z-1/2$; (iv) x , $y+1$, z ; (v) x , $y-1$, z ; (vi) $-x$, $y-1$, z ; (vi)					

-z+1/2.

Fig. 1

